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Kink-antikink interactions in the double sine-Gordon equation
and the problem of resonance frequencies
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We studied the kink-antikink collision process for the ‘‘double sine-Gordon’’~DSG! equation in 111
dimensions at different values of the potential parameterR.0. For small values ofR we discuss the problem
of resonance frequencies. We give qualitative explanation of the frequency shift in comparison with the
frequency of the discrete level in the potential well of isolated kink. We show that in this region of the
parameterR the effective long-range interaction between kink and antikink takes place.
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I. INTRODUCTION

The resonant energy exchange mechanism, which
shall consider in this paper, was originally observed in
kink-antikink collisions for thelf2

4 theory. To examine such
a process, one should consider an initial configuration in
form of a kink (K) and antikink (K̄) placed atx56x0 (x0
@1) moving toward each other with some velocitiesv i . It
was found that there is a critical value of the initial veloc

vcr>0.2598, and atv i.vcr inelastic KK̄ scattering takes
place while atv i,vcr , kinks and antikinks form a bound
state. This bound state then decays into small oscillations@1#.

Later on, when theKK̄ collision process was studie
more carefully, so-called escape windows were found@2# in
the range of the initial velocitiesv i,vcr . Escape windows
are merely some values of the initial velocityv i5vn at
which kinks escape to infinity after a second collision inste
of forming a bound state. This phenomenon was semiqu
titatively explained in Ref. @2#. The point is that the
lf2

4-theory kink excitation spectrum has one zero~transla-
tion! and one nonzero~shape! mode with the frequencyv1

5A3/2. It was observed that the following condition is sa
isfied with a reasonable accuracy:

v1T12~vn!5d12pn, ~1!

whereT12 is the time interval between the two collisions
the kinks, n is an integer, andd is some constant phase
During the firstKK̄ collision, a part of their kinetic energy i
transferred to excitation of the kink discrete modev1 .
Therefore, kinks cannot escape to infinity and only go aw
at some distance and collide again. If condition~1! is satis-
fied, part of the energy that is conserved in the modev1 is
returned back to the kink translation mode~kinetic energy!
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and kinks can overcome the mutual attraction and go to
finity. This phenomenon was named ‘‘resonant energy tra
fer mechanism.’’

Note that ‘‘higher-orders’’ escape windows were al
found. In these casesK andK̄ escape to infinity after three o
more collisions. For more detailed information about solita
wave interactions in the classical field theory, see Ref.@3#.

Let us now turn our attention to the system that we sh
investigate in the present paper. The double sine-Gor
~DSG! equation can be obtained from the Lagrangian of
form

L5
1

2 S ]f

]t D 2

2
1

2 S ]f

]x D 2

2V~f! ~2!

with the potential

V~f!52
4

114uhu S h cosf2cos
f

2 D . ~3!

Parameterh may be assigned any arbitrary real value (2`
,h,1`). From Lagrangian~2! we get for the real scala
field f(x,t) in ~111! dimensions the following equation:

]2f

]t2
2

]2f

]x2
1

2

114uhu S 2h sinf2sin
f

2 D50. ~4!

In the present work we shall consider the rangeh.0. In this
case it is suitable to introduce parameterR related withh by
the equality@4#

h5
1

4
sinh2 R.

Equation~4! has a static topological solution in the form of
4p kink ~antikink! @4#:

fK(K̄)~x!54pn64 arctan
sinhx

coshR
. ~5!
3305 © 1999 The American Physical Society
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The sign ‘‘1 ’’ corresponds to the case of kink, ‘‘2 ’’ corre-
sponds to the case of antikink, andn is an integer. Equation
~5! can be rewritten in the form

fK(K̄)~x!54pn6@fSGK~x1R!2fSGK~R2x!#, ~58!

where fSGK(x)54 arctan exp(x) is the sine-Gordon~SG!
equation 2p soliton. From Eq.~5a! the physical meaning o
the parameterR becomes clear: DSG kink can be interpret
as a superposition of two SG solitons, separated by the
tance 2R.

The KK̄ collision process at a variety of values of th
parameterh and the initial velocityv i was studied in detai
in Ref. @4#. As for thelf2

4-theory case, there is some critic
velocity vcr below which kinks form a bound state decayin
into small oscillations. Note that in the DSG case this criti
velocity is a function of the parameter (h or R) @4#.

It was found that in the DSG system the resonant ene
exchange mechanism also takes place. As a consequ
there is a system of escape windows at some values oh.
Note that there is one important difference in kink collisi
processes betweenlf2

4 and DSG models. In the first cas
kinks cannot pass through each other at a valuable dista
while in the second they can travel to infinity after pass
through each other. This difference is a consequence of
different structure of the potentialV(f).

In Ref. @4# different values of the parameterR were stud-
ied. At R51.2, a typical picture of escape windows w
similar to the lf2

4-theory case. However, at smallerR,
namely atR50.5, a new phenomenon was observed in
KK̄ collisions — so-called quasiresonances. The essenc
the phenomenon is in the following. At all velocitiesv i

,vcr we get capture and formation of theKK̄ bound state,
but the time between the second and third collisionsT23 as a
function of the initial velocityv i has a series of well-define
maxima; see Fig. 1. Such behavior ofT23(v i) means that the
resonant energy exchange mechanism appears in the sy
but at the same time the energy that returns to the transla
mode during the second collision is not enough for kinks
escape to infinity after the second collision. Besides, it tur
out that the frequency of oscillations in which a part of t

FIG. 1. The timeT12 between the first twoKK̄ collisions
~dashed curve! and the timeT23 between their second and thir
collisions ~solid curve! as functions of the initial velocityv i for R
50.5. Dimensionless units.
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kinetic energy is transferred while kinks passing throu
each other for the first time, i.e.,v1 in Eq. ~1!, is smaller
than the frequency of the localized DSG kink excitations a
given R.

It is worth mentioning that the spectrum of the small o
cillations about the 4p double sine-Gordon kink was als
investigated in detail in Ref.@5#. The authors of@5# used
natural supersymmetry of the one-dimensional Schro¨dinger
equation with the exactly known ground-state wave functi
In @5#, analytical expressions for the unnormalized eige
functions of the descrete and continuum modes were
presented.

II. GENERAL APPROACH

Up to now, investigating the resonant energy exchan
mechanism involved the localized excitations over an i
lated kink ~or antikink!. As it will be shown, in some case
of the KK̄ scattering such an approximation is not valid.
these cases one should consider the spectrum of small
tations for theKK̄ system as a whole. For this purpose, let
look for the solution of Eq.~4! for the fieldf in the form

f~x,t !52p1fK~x2x0!1f K̄~x1x0!1df~x,t !.

Such a configuration corresponds to the kink and antik
placed atx56x0 plus some small perturbationdf(x,t),
udfu!1. Taking into account thatfK andf K̄ are solutions
of Eq. ~4!, we get fordf the following linearized equation

df tt2dfxx1df
]2V

]f2U
f52p1fK1fK̄

5Q~x,x0!, ~6!

where

Q~x,x0!5
]V

]f U
f5fK

1
]V

]f U
f5fK̄

2
]V

]fU
f52p1fK1fK̄

. ~7!

The explicit form of the functionQ(x,x0) is rather cumber-
some~see the Appendix!, but nevertheless we can make se
eral general notes. InhomogeneityQ(x,x0) in Eq. ~6! is a
consequence of the fact that the configuration ‘‘ki
1antikink’’ is not a solution of Eq.~4!. The function
Q(x,x0) characterizes overlapping of the kink and antikin
becausefK(x2x0) and f K̄(x1x0) are exact solutions o
Eq. ~4! when taken separately. Obviously,Q(x,x0) is an
even function ofx and x0 and it falls down exponentially
when x0 increases. At fixedx0 as a function ofx, Q(x,x0)
looks like two bumps with maxima atx56x0 .

Let us now find the excitation spectrum fordf. For this
purpose we take Eq.~6! with zero on the right-hand side an
look for df in the form

df~x,t !5eivtx~x!.

Then for the functionx(x) we get the following differential
equation of the Schro¨dinger type:

2x91U~x,x0!x5v2x, ~8!

where
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U~x,x0![
]2V

]f2U
f52p1fK1fK̄

. ~9!

The explicit form of the potentialU(x,x0) is rather compli-
cated~see the Appendix! and depends crucially onx0 . Note
that the shape of this potential depends on the parameteR
or h) and U(x,x0)→1 whenx→6`. Hence,v,1 forms
the discrete excitation spectrum, andv.1 forms the con-
tinuum one. In the limitx0@1, U(x,x0) as a function ofx
looks like two identical potential wells, separated by the d
tance 2x0 . Each well contains one or more discrete leve
which correspond to the localized excitations of the solit
kink ~antikink!. In the collision process, DSG kinks pa
through each other, i.e.,x0 decreases to zero and then sta
to increase again. At smallx0 , the distance between th
wells is small and the discrete levels are not independ
With kinks moving toward each other from infinity, the lev
els begin to split and then atx0&1 the mutual potential of
the systemKK̄ is quite different from that of the solitary
kink ~antikink!.

Notice that in Ref.@6# the analytical expression of th
bound state frequency of the kink-kink system is presen
for the entire range ofR for large distances between kinks.
the present paper, we study numerically the behavior of
discrete levels corresponding to the kink-antikink system
citations in the range of smallR and for not too large dis-
tances between kinks and antikinks.

It is worth mentioning that taking into account both we
is also necessary in cases when in each potential well the
a discrete level with small binding energy situated near
continuum. In such cases one should take into account o
lapping of the wave functions in both wells even atx0@1.
This means that under some conditions, long-range inte
tion between kinks and antikinks appears in the system.

In what follows, we will show that within such an ap
proach the phenomenon of quasiresonances observed i
DSG system atR50.5 in Ref.@4# may be simply explained
We will also argue that the cause of the quasiresonance
just the resonant energy exchange mechanism, which l
to escape windows at some other values ofR. Moreover,
there is some intermediate region ofR where quasireso
nances and escape windows appear together.

III. SMALL R

In Ref. @4#, quasiresonances were observed atR50.5. We
performed similar calculations and obtained an analog
curveT23(v i); see Fig. 1. Besides that, we have investiga
the KK̄ collision process atR50.4 andR50.6. At R50.4
~Fig. 2! we get a picture of quasiresonance peaks analog
to the caseR50.5. At R50.6 ~Fig. 3! there seem to exis
escape windows in place of some peaks on the cu
T23(v i). It confirms that quasiresonances and escape w
dows are phenomena of the same nature, and with the
rameterR increasing, some quasiresonance peaks transf
into the escape windows. At some intermediate values oR
both phenomena are presented, and with further increasin
R only escape windows survive. AtR51.2 in Ref. @4# a
perfect picture of escape windows and no quasiresona
was observed.
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To answer the question of why at givenR quasireso-
nances or escape windows appear, it is required, gene
speaking, to solve Eq.~6! for df with the right-hand side. At
the same time we can suggest some truelike hypothesis. E
bump of the sourceQ(x,x0) is localized on a size of order o
1 ~see the Appendix!. In the case of smallR;0.4– 0.6, the
first excited level in the well is not well-localized~binding
energy is small!. Therefore, the integral of overlapping o
Q(x,x0) and the wave function of the excited state is sma
It corresponds with the fact that the part of the kinetic ene
transferred to the discrete modev1 is small, and hence the
loss of energy due to radiation is large. The situation chan
with increasingR. The binding energy of the first excite
level is increasing, and forR51.2 the first excited level in
the well is already well-localized. For this reason the ch
acter size of the wave function is of the same order as tha
the source. Hence the energy transfer mechanism is m
effective in this case.

From analysis of the quasiresonance peaks of theT23(v i)
plot for R50.5 ~Fig. 1!, it follows that the frequency of the
discrete mode being excited is approximately equal toṽ1
50.945. At the same time, in the well corresponding to on

FIG. 2. The timeT12 between the first twoKK̄ collisions
~dashed curve! and the timeT23 between their second and thir
collisions ~solid curve! as functions of the initial velocityv i for R
50.4. Dimensionless units.

FIG. 3. The timeT12 between the first twoKK̄ collisions
~dashed curve! and the timeT23 between their second and thir
collisions ~solid curve! as functions of the initial velocityv i for R
50.6. Arrows denote probable positions of the escape windo
Dimensionless units.
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kink excitations there is a discrete level with frequencyv1
50.967. As it will be shown, this deviation is not incident
and may be easily interpreted within our approach.

At small R the system is close to the pure sine-Gord
case. Therefore, the critical velocityvcr is small (vcr50 cor-
responds to the pure sine-Gordon case! and potential~9! in
the Schrodinger equation~8! has one discrete level situate
near the continuum~in the pure sine-Gordon case there
only zero mode!. The presence of a shallow level implie
that the corresponding wave function falls down slowly w
the distance from the well. For this reason, while study
the KK̄ collision process it is necessary to take into acco
the fact that the wells affect each other even at large
tances. This leads to changes in the excitation spectrum
Fig. 4 we show how the excitation frequency of theKK̄

system depends on the distance betweenK and K̄ ~this dis-
tance is equal to 2x0). From the plot it is seen that even
x0@1, there is some visible splitting of the higher discre
level. In the presence of the second well, this levelv1

50.967 splits into two sublevels: the higher withṽ1
odd

.0.967 and the lower withṽ1
even,0.967. In the collision

process the lower one is excited because the correspon
wave function is even. Moreover, the higher level may d
appear during the collision. From Fig. 4 one can see that
higher level appears from the continuumv.1 at some criti-
cal distance 2(x0)cr@1 between kink and antikink. So, if th
original level in a single well lies near the continuum~as it
happens at smallR), then (x0)cr is very large. At the same
time, the level withṽ1

even exists in a relatively wide interva
of distancesx0 between kink and antikink. Namely this leve
is excited during theKK̄ collision because of the resona
energy exchange mechanism. In this case the frequencv1

in Eq. ~1! is indeed frequencyṽ1
even averaged over differen

x0 . It is smaller than the frequency of the discrete mode
the isolated kink, which is in correspondence with the n
merical simulations.

IV. NUMERICAL CALCULATIONS

We solved the second-order partial differential equat
~4! numerically on the lattice withDx50.01. Initial condi-
tions were taken in the form of kink and antikink~5! situated

FIG. 4. The excitation frequency as a function of the init

half-distance betweenK and K̄. R50.5. Dimensionless units.
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at x5620 moving towards each other with velocities7v i ,
respectively. Moments of kink and antikink passing throu
each other were fixed via field behavior at the originx50.

To find discrete levels in the potential~9!, we used the
fact that the wave function falls down exponentially at lar
distances. We took the solution of the Schro¨dinger equation
in the form x;exp(xA12v2) at x5250 and solved nu-
merically stationary equation~8!. As a result, we gotx at x
550 as a function ofv. Whenv does not correspond to th
discrete level,x grows exponentially withx at positivex’s,
but if v coincides with a discrete level of the potential, th
x is exponentially suppressed at largex. In real computations
we observed thatx(x550) changed its sign whenv passed
a discrete level. Note that this method, which is being
plied to the searching of a shallow level, does not yield
good result. In such a case one should take more dis
starting and ending points. The origin of the problem is
the following: for a shallow levelv→1, and exponents fal
and grow very slowly with increasingx.

V. CONCLUSIONS

This paper presents a qualitative and semiquantitative
planation of the phenomenon of quasiresonances in c
sions of kinks and antikinks of the double sine-Gordon eq
tion at smallR. It is shown that the resonant energy exchan
mechanism being applied in its previous form does not g
satisfactory results for frequencies.

It was shown that the resonant energy exchange betw
the kinks’ translation mode and the discrete excitations of
KK̄ system as a whole takes place. At smallR, it is essential
because of the long-range interaction in the system cause
the presence of a shallow level in the discrete spectrum
excitations of an isolated kink~antikink!.

The proposed mechanism explains qualitatively the
crease of the resonance frequencyv1 in Eq. ~1! at smallR in
comparison with the discrete frequency of an isolated kin
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APPENDIX

In the equation

]2f

]t2
2

]2f

]x2
1

]V

]f
50, ~A1!
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whereV(f) has the form~3!, let us substitutef52p1fK
1f K̄1df. Taking into account thatfK and f K̄ are exact
solutions of Eq.~A1! and linearizing with respect todf, we
get

]2df

]t2
2

]2df

]x2
1

]2V

]f2U
2p1fK1fK̄

df5Q~x,x0!, ~A2!

whereQ(x,x0) is given by Eq.~7!. If we substitute explicit
expressions for kinks and antikinks situated atx56x0 , re-
spectively, then we get

Q~x,x0!5
8

114h
X s12s2

~11s1
2 !~11s2

2 !
14hH s2~12s2

2 !

~11s2
2 !2

3F12S 12s1
2

11s1
2 D 2G2

s1~12s1
2 !

~11s1
2 !2

3F12S 12s2
2

11s2
2 D 2G J C, ~A3!

where

s65
sinh~x6x0!

coshR
ica
@h andR are related byh5(1/4)sinh2 R].
Let us use Q(x,x0)50 in Eq. ~A2! and substitute

df(x,t)5x(x)exp(ivt). Then we obtain

2x91U~x,x0!x5v2x,

where

U~x,x0![
]2V

]f2U
f52p1fK1fK̄

.

Insert here explicit expressions for kinks and antikinks. A
result, we have

U~x,x0!5
1

114h F12s2
2

11s2
2

12s1
2

11s1
2

1
4s2s1

~11s2
2 !~11s1

2 !

18hS 12s2
2

11s2
2

12s1
2

11s1
2

1
4s2s1

~11s2
2 !~11s1

2 !
D 2

24hG . ~A4!
B
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